STATISTICS

Discrete data: information collected by counting

Continuous data: information collected by measurement, e.g.

lengths, heights, time, etc.

A. <u>Ungrouped data</u> (arrange in order of size.)

- Mode: score that occurs most often (number with greatest frequency)
- Median: middle number in a set of ranked data
- 3. **Mean** (average): $\bar{x} = \frac{\text{total value of numbers listed}}{\text{total frequency}}$ $\bar{x} = \frac{\sum x}{n}$
- 4. Range: largest value smallest value
- Quartiles: divide data spread into quarters
- 6. Percentiles: divide data spread into one hundredths position of 30th percentile: e.g. $P_{30} = \frac{30}{100}(n+1)$
- 7. Lower quartile Q_1 : 25th percentile: position = $\frac{1}{4}(n+1)$
- 8. **Median Q₂:** 50th percentile: position = $\frac{1}{2}(n+1)$
- 9. Upper quartile Q_3 : 75th percentile: position = $\frac{3}{4}(n+1)$
- 10. Interquartile range IQR: Q₃ Q₁
- 11. Semi-interquartile range: $\frac{Q_3 Q_1}{2}$
- Five number summary: sample size (min.; Q₁; M; Q₃; max.)
- 13. Box and whisker diagram:
- 13.1 <u>Symmetrical data</u> min. value Q₁ M Q₃ max. value
- 13.2 Skewed data

skewed to the left (data is spread more to the left of the median)
[NB. Draw diagram to scale on a number line.]

- Modal class: class with highest frequency
- Ogive: cumulative frequency polygon

16. Outliers: data values less than $[Q_1 - 1,5 \times IQR]$ data values greater than $[Q_3 + 1,5 \times IQR]$

Grouped data В.

17. ∑: sum of

n: total number of scores

x: each score in sample

 x_1 : midpoint of interval

f: frequency of score

18. **Mean:** $\bar{x} = \frac{\sum f.x_1}{n}$

19. Variance: $\frac{\sum (x_j - \overline{x})^2}{}$

20. Standard deviation: √variance

Example 1

Data	f	cum. f	x ₁	$f.x_1$
$10 \le x < 20$	2	2	15	30
$20 \le x < 30$	5	7	25	125
$30 \le x < 40$	18	25	35	630
$40 \le x < 50$	20	45	45	900
$50 \le x < 60$	15	60	55	825
				2510

 $\bar{x} = \frac{\sum f.x_1}{n} = \frac{2510}{60} = 41,83$ Mean:

Example 2

Data(x)	$x-\bar{x}$	$(x-\overline{x})^2$
8	-3	9
10	-1	1
12	1	1
14	3	9
11	0	0
55		20

1. **mean:** $\bar{x} = \frac{55}{5} = 11$ 2. **Variance:** $\frac{\sum (x - \bar{x})^2}{n} = \frac{20}{5} = 4$

3. Standard dev. (σ): $\sqrt{4} = 2$

MAKE SURE THAT YOU CAN DETERMINE THE

STANDARD DEVIATION SD (σ), BY USING YOUR CALCULATOR.

A high standard deviation indicates that the data values are spread out and have a large range.

Worksheet 7 A

Given: 15; 24; 11; 22; 8; 78; 33; 31; 83; 15; 26; 22; 36; 21; 36; 22

- 1. Determine the
- 1.1 mean;
- 1.2 mode;
- 1.3 median;
- 1.4 lower quartile O1:
- 1.5 upper quartile Q3;
- 1.6 range;
- 1.7 inter-quartile range (IQR);
- 1.8 semi- IQR;
- 1.9 outliers.
- The coins in 10 money bags were counted. The result was:

- 2.1 The average number of coins per bag is 23. Calculate the value of x to the nearest integer.
- 2.2 Use the information to draw a box and whisker diagram.

3.

- 3.1 Which percentage of the data lies between 15 and 55?
- 3.2 Calculate the difference between the median and the third quartile.

Worksheet 7 A

- Determine the range of the data.
- Comment on the skewedness of the data.
- 3.5 What percentage of the data is more than 65?
- The average of 3 friends' mass is 95 kg. Frans's mass
- is 100 kg. Nico's mass is 87 kg. Determine Jaco's mass.

5. Given:

50 customers were asked to record the amount of money spent on the 8th of February 2012. The following table shows the purchases:

Groceries purchased (R)	Number of clients	
$0 \le x < 50$	1	
$50 \le x < 100$	5	
$100 \le x < 150$	6	
$150 \le x < 200$	18	
$200 \le x < 250$	14	
$250 \le x < 300$	6	

- 5.1 Determine the
- (a) modal class;
- (b) median class;
- (c) mean amount that was spent on groceries.
- 5.2 Draw a cumulative frequency graph of the data.
- 5.3 Use the graph to find the median, lower and upper quartile.

Worksheet 7 C

 Two schools, A and B, compare their "AdMaths" students' marks in an examination. School A provides learners' information with a box and whisker diagram. School B provides only the marks. There are 12 students in each school who take "AdMaths".

School A:

School B:

30; 43; 84; 68; 45; 90; 86; 60; 74; 70; 78; 56

- 3.1 How would you compare the two schools' marks?
- 3.2 Show with reasons and the necessary calculations, which school has the best results.
- Determine the interquartile range of school A.
- 3.4 Give the interval of points for the top 3 students in class A.
- The ogive represents the examination marks of 100 gr. 11 learners.
- 4.1 Use the ogive to complete the given frequency table.

Worksheet 7 C

Marks	Cum f	f
20≤x<30		4
30≤x<40	12	
40≤x<50		
50≤x<60		18
60≤x<70	68	
70≤x<80		
80≤x<90	94	10
90≤x<100	100	

- 4.2 Determine how many learners achieved 50% or more in the examination.
- 2 hockey teams' goal keepers are compared with respect to goals prevented per game. Their results are as follows:

Sipho	6	8	7	3	8	5
Johan	2	12	2	10	3	7

- Calculate the average number of goals prevented for every goal keeper.
- 5.2 Calculate the standard deviation of the data for each player.
- 5.3 Compare the 2 players using norms of central tendency and measures of dispersion.

Worksheet 7 C

 The municipality purchases a truck at the beginning of the year for R2 000 000. The truck depreciates at a rate of 12% per annum. The table gives the value of the truck at the end of each of the seven years of its serviceable life.

Year end	Truck value		
77.00.000.000.700.000.000.000.000.000.0	(R m)		
1	1,760		
2	1,549		
3	1,363		
4	1,199		
5	1,055		
6	0,929		
7	0,817		

- 6.1 Draw a scatter plot to represent the above data.
- 6.2 Describe the nature of the number pattern in the second column. Give a reason for your answer.
- 6.3 Draw a curve of best fit.
- 6.4 It is suspected that the curve of best fit has an equation of the form W=ab". Using the information you have obtained in this question, give the equation of the curve.
- Examination marks obtained by 120 grade 11 learners in the June examinations are indicated in the following histogram:

Worksheet 7 C

7.

 Complete a cumulative frequency table for the data above.

Marks	f	Cum. f
0≤x<10	3	
10≤x<20	5	
	2	
30≤x<40		
40≤x<50		
60≤x<70		
70≤x<80		
90≤x<100		

- 7.2 Draw an ogive of the data.
- 7.3 Use the ogive and determine:
- 7.3.1 how many learners achieved more than 75%;
- 7.3.2 the median.